Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Lars Kr. Hansen, ${ }^{\text {a }}$ * Annette Bayer $^{\text {a }}$ and Odd R. Gautun ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, and
${ }^{\mathbf{b}}$ Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.117$
Data-to-parameter ratio $=13.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

($1 R^{*}, 3 R^{*}, 6 S^{*}$)-3,6-Dihydro-3,6-dimethyl-2-(toluene-4-sulfonyl)-1 λ^{4},2-thiazine 1 -oxide

The title compound, $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}_{2}$, is shown to have a trans arrangement of the $\mathrm{S}=\mathrm{O}$ group and the methyl groups in the thiazine ring.

Comment

Hetero-[4+2]-cycloadditions of N-sulfinyl compounds ($R-$ $\mathrm{N}=\mathrm{S}=\mathrm{O}$) and dienes provide 3,6-dihydro-1,2-thiazine 1oxides (Boger \& Weinreb, 1987; Kresze \& Wucherpfennig, 1967). 3,6-Dihydro-3,6-dimethyl-2-(toluene-4-sulfonyl)-1 $1 \lambda^{4}, 2-$ thiazine 1-oxide $\left(\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}_{2}\right)$ was obtained by a $[2+4]$ cycloaddition of (E, E)-2,4-hexadiene and N-sulfinyl-4toluenesulfonamide in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature (Mock \& Nugent, 1975). The reaction product contained two isomers in the ratio $6: 1$, with different orientations of the $\mathrm{S}=\mathrm{O}$ bond relative to the methyl groups. The ($1 R^{*}, 3 S^{*}, 6 R^{*}$) isomer has the $\mathrm{S}=\mathrm{O}$ bond cis to the methyl groups, while the $\left(1 R^{*}, 3 R^{*}, 6 S^{*}\right)$ isomer has a trans orientation. The configuration at sulfur has earlier been assigned by lanthanide-induced shielding effects in ${ }^{1} \mathrm{H}$ NMR (Mock \& Nugent, 1975). The structure of the minor product is reported here.

(I)

The title compound, (I), crystallizes in the monoclinic centrosymmetric space group $P 2_{1} / n$. A molecule with the atomic numbering scheme is shown in Fig. 1. The crystal structure was found to be that of the $\left(1 R^{*}, 3 R^{*}, 6 S^{*}\right)$-isomer and the assignment of Mock \& Nugent (1975) was confirmed. However, those authors assumed a half-chair conformation with the $\mathrm{S}=\mathrm{O}$ bond in an equatorial position. The total puckering amplitude parameter Q_{T} is 0.604 (3) \AA (Cremer \& Pople, 1975; Iulek \& Zukerman-Schpector, 1997). This ring puckering is described as 33% half-chair and 32% half-boat. One also sees that the $\mathrm{S}=\mathrm{O}$ bond is in a quasi-axial position, in accordance with several 1,2-thiazine 1-oxides (Boger \& Weinreb, 1987). Least-squares planes through the phenyl part (atoms C6-C11) and the thiazine part (atoms $\mathrm{C} 1-\mathrm{C} 4$) have a dihedral angle of $51.00(9)^{\circ}$. Atoms S1 and N1 are displaced 1.075 (4) and 0.303 (4) A, respectively, out of the plane through atoms $\mathrm{C} 1-\mathrm{C} 4$. Atom C 12 is almost coplanar with the phenyl group [deviation 0.094 (4) \AA], while atom S2 lies

Received 7 January 2002
Accepted 21 January 2002 Online 31 January 2002

Figure 1
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.
0.229 (3) \AA out of the plane. A selection of bond lengths shows that these are all within normal ranges (Allen et al., 1987). $\mathrm{S} 2=\mathrm{O} 2$ and $\mathrm{S} 2=\mathrm{O} 3$ are 1.423 (2) and 1.422 (2) \AA, respectively, while $\mathrm{S} 1=\mathrm{O} 1$ is 1.466 (2) \AA. These values are in complete agreement with the values found in the crystal structure of $\left(1 R^{*}, 3 S^{*}\right)$-3,6-dihydro-3-methyl-2-(toluene-4-sulfonyl)- $1 \lambda^{4}, 2$-thiazine 1 -oxide (Hansen et al., 2001). The molecules are packed in the crystal through a series of intraand intermolecular short contacts (Taylor \& Kennard, 1982) (see Table 1).

Experimental

The 1,4-thiazine 1-oxide was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and heptane was added until saturation. Crystals were grown by slow evaporation of the solvent in the refrigerator.

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}_{2}$
$M_{r}=299.40$
Monoclinic, $P 2_{1} / n$
$a=9.8136(16) \AA$
$b=12.485(2) \AA$
$c=11.9359(19) \AA$
$\beta=103.610(14)^{\circ}$
$V=1421.3$ (4) \AA^{3}
$Z=4$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: ψ scan
[McArdle \& Daly (1999)
(ABSCALC in OSCAIL) and
North et al. (1968)]
$T_{\text {min }}=0.828, T_{\text {max }}=0.893$
2478 measured reflections
2275 independent reflections

```
\(D_{x}=1.399 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 25
    reflections
\(\theta=12-18^{\circ}\)
\(\mu=0.38 \mathrm{~mm}^{-1}\)
\(T=298\) (2) K
Block, colourless
\(0.5 \times 0.4 \times 0.3 \mathrm{~mm}\)
1998 reflections with \(I>2 \sigma(I)\)
\(R_{\text {int }}=0.011\)
\(\theta_{\text {max }}=25.0^{\circ}\)
\(h=0 \rightarrow 9\)
\(k=0 \rightarrow 14\)
\(l=-14 \rightarrow 13\)
3 standard reflections
    frequency: 120 min
    intensity decay: \(2 \%\)
```


Refinement

Refinement on $F^{2} \quad w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0842 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$+0.3859 P$]
$w R\left(F^{2}\right)=0.117$
$S=1.02$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.018$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\max }=0.29 \mathrm{e}^{\mathrm{A}} \AA^{-3}$
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$
175 parameters

H -atom parameters constrained

Table 1
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$		0.98	2.62	$3.463(6)$
${\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O} 2^{\mathrm{ii}}}^{\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}}$	0.96	2.66	$3.564(6)$	144
$\mathrm{C}^{\mathrm{i}} 3-\mathrm{H} 13 A \cdots 1^{\mathrm{i}}$	0.93	2.73	$3.612(6)$	158
$\mathrm{C} 8-\mathrm{H} 8 \cdots \mathrm{O}^{\mathrm{iii}}$	0.96	2.67	$3.625(3)$	173
$\mathrm{C} 12-\mathrm{H} 12 C \cdots \mathrm{O}^{\mathrm{iv}}$	0.93	2.70	$3.365(6)$	130
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$	0.96	2.74	$3.358(6)$	123
$\mathrm{C} 5-\mathrm{H} 5 B \cdots \mathrm{O} 2$	0.93	2.55	$2.916(6)$	104
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 2$	0.96	2.60	$3.160(6)$	117

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}+y,-\frac{1}{2}-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$; (iv) $x, y, z-1$.

Owing to an error in the data-collection procedure some reflections with $h>9$ are missing.

Data collection: CAD-4-PC Software (Enraf-Nonius, 1992); cell refinement: CELDIM in CAD-4-PC Software; data reduction: XCAD4 (McArdle \& Higgins, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: OSCAIL (McArdle, 1993).

AB thanks the Norwegian Research Council for financial support (grant 122792/410).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Boger, D. L. \& Weinreb, S. W. (1987). Hetero Diels-Alder Methodology in Organic Synthesis, pp. 1-33. San Diego: Academic Press Inc.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1359.
Enraf-Nonius. (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Hansen, L. Kr., Bayer, A. \& Gautun, O. R. (2001). Acta Cryst. E57, o1109o1110.
Iulek, J. \& Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433-434.
Kresze, G. \& Wucherpfennig, W. (1967). Angew. Chem. Int. Ed. 6, 149-167.
McArdle, P. (1993). J. Appl. Cryst. 26, 752.
McArdle, P. (1995). J. Appl. Cryst. 28, 65.
McArdle, P. \& Higgins, T. (1995). XCAD4. National University of Ireland, Galway, Ireland.
McArdle, P. \& Daly, P. (1999). ABSCALC. PC version. National University of Ireland, Galway, Ireland.
Mock, W. L. \& Nugent, R. M. (1975). J. Am. Chem. Soc. 97, 6521-6526.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst A24, 351359.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Taylor, R. \& Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.

