organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Lars Kr. Hansen,^a* Annette Bayer^a and Odd R. Gautun^b

^aDepartment of Chemistry, University of Tromsø, N-9037 Tromsø, Norway, and ^bDepartment of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.038 wR factor = 0.117 Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. $(1R^*, 3R^*, 6S^*)$ -3,6-Dihydro-3,6-dimethyl-2-(toluene-4-sulfonyl)-1 λ^4 ,2-thiazine 1-oxide

The title compound, $C_{13}H_{17}NO_3S_2$, is shown to have a *trans* arrangement of the S=O group and the methyl groups in the thiazine ring.

Received 7 January 2002 Accepted 21 January 2002 Online 31 January 2002

Comment

Hetero-[4+2]-cycloadditions of *N*-sulfinyl compounds (R–N=S=O) and dienes provide 3,6-dihydro-1,2-thiazine 1-oxides (Boger & Weinreb, 1987; Kresze & Wucherpfennig, 1967). 3,6-Dihydro-3,6-dimethyl-2-(toluene-4-sulfonyl)-1 λ^4 ,2-thiazine 1-oxide ($C_{13}H_{17}NO_3S_2$) was obtained by a [2+4]-cycloaddition of (E,E)-2,4-hexadiene and *N*-sulfinyl-4-toluenesulfonamide in CH₂Cl₂ at room temperature (Mock & Nugent, 1975). The reaction product contained two isomers in the ratio 6:1, with different orientations of the S=O bond relative to the methyl groups. The ($1R^*, 3S^*, 6R^*$) isomer has the S=O bond *cis* to the methyl groups, while the ($1R^*, 3R^*, 6S^*$) isomer has a *trans* orientation. The configuration at sulfur has earlier been assigned by lanthanide-induced shielding effects in ¹H NMR (Mock & Nugent, 1975). The structure of the minor product is reported here.

The title compound, (I), crystallizes in the monoclinic centrosymmetric space group $P2_1/n$. A molecule with the atomic numbering scheme is shown in Fig. 1. The crystal structure was found to be that of the $(1R^*, 3R^*, 6S^*)$ -isomer and the assignment of Mock & Nugent (1975) was confirmed. However, those authors assumed a half-chair conformation with the S=O bond in an equatorial position. The total puckering amplitude parameter Q_T is 0.604 (3) Å (Cremer & Pople, 1975; Iulek & Zukerman-Schpector, 1997). This ring puckering is described as 33% half-chair and 32% half-boat. One also sees that the S=O bond is in a quasi-axial position, in accordance with several 1,2-thiazine 1-oxides (Boger & Weinreb, 1987). Least-squares planes through the phenyl part (atoms C6-C11) and the thiazine part (atoms C1-C4) have a dihedral angle of 51.00 (9)°. Atoms S1 and N1 are displaced 1.075 (4) and 0.303 (4) Å, respectively, out of the plane through atoms C1-C4. Atom C12 is almost coplanar with the phenyl group [deviation 0.094 (4) Å], while atom S2 lies

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

0.229 (3) Å out of the plane. A selection of bond lengths shows that these are all within normal ranges (Allen *et al.*, 1987). S2=O2 and S2=O3 are 1.423 (2) and 1.422 (2) Å, respectively, while S1=O1 is 1.466 (2) Å. These values are in complete agreement with the values found in the crystal structure of $(1R^*,3S^*)$ -3,6-dihydro-3-methyl-2-(toluene-4-sulfonyl)-1 λ^4 ,2-thiazine 1-oxide (Hansen *et al.*, 2001). The molecules are packed in the crystal through a series of intraand intermolecular short contacts (Taylor & Kennard, 1982) (see Table 1).

Experimental

The 1,4-thiazine 1-oxide was dissolved in CH_2Cl_2 and heptane was added until saturation. Crystals were grown by slow evaporation of the solvent in the refrigerator.

Crystal data

$C_{13}H_{17}NO_3S_2$ $M_r = 299.40$ Monoclinic, $P2_1/n$ a = 9.8136 (16) Å b = 12.485 (2) Å c = 11.9359 (19) Å $\beta = 103.610$ (14)° V = 1421 3 (4) Å ³	$D_x = 1.399 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 25 reflections $\theta = 12-18^{\circ}$ $\mu = 0.38 \text{ mm}^{-1}$ T = 298 (2) K Block colourless
Z = 4	$0.5 \times 0.4 \times 0.3 \text{ mm}$
Data collection	
Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: ψ scan [McArdle & Daly (1999) (ABSCALC in OSCALL) and	1998 reflections with $I > 2\sigma(I)$ $R_{int} = 0.011$ $\theta_{max} = 25.0^{\circ}$ $h = 0 \rightarrow 9$ $k = 0 \rightarrow 14$ $I = 14 \rightarrow 13$
(ABSCALC in OSCALL) and North <i>et al.</i> (1968)] $T_{min} = 0.828, T_{max} = 0.893$ 2478 measured reflections 2275 independent reflections	$l = -14 \rightarrow 15$ 3 standard reflections frequency: 120 min intensity decay: 2%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0842P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	+ 0.3859P]
$wR(F^2) = 0.117$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} = 0.018$
2275 reflections	$\Delta \rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3}$
175 parameters	$\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C1-H1\cdots O2^{i}$	0.98	2.62	3.463 (6)	144
$C12 - H12B \cdots O2^{ii}$	0.96	2.66	3.564 (6)	158
$C2-H2\cdots O3^i$	0.93	2.73	3.612 (6)	158
$C13-H13A\cdotsO1^{i}$	0.96	2.67	3.625 (3)	173
C8−H8···O1 ⁱⁱⁱ	0.93	2.70	3.365 (6)	130
$C12-H12C\cdots O1^{iv}$	0.96	2.74	3.358 (6)	123
$C7-H7\cdots O2$	0.93	2.55	2.916 (6)	104
$C5-H5B\cdots O2$	0.96	2.60	3.160 (6)	117
$C4-H4\cdots O2$	0.98	2.48	2.806 (6)	99

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{1}{2} - z$; (ii) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $-\frac{1}{2} - z$; (iii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (iv) x, y, z - 1.

Owing to an error in the data-collection procedure some reflections with h > 9 are missing.

Data collection: *CAD*-4-*PC Software* (Enraf–Nonius, 1992); cell refinement: *CELDIM* in *CAD*-4-*PC Software*; data reduction: *XCAD*4 (McArdle & Higgins, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *OSCAIL* (McArdle, 1993).

AB thanks the Norwegian Research Council for financial support (grant 122792/410).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Boger, D. L. & Weinreb, S. W. (1987). Hetero Diels-Alder Methodology in Organic Synthesis, pp. 1–33. San Diego: Academic Press Inc.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1359.
- Enraf-Nonius. (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Hansen, L. Kr., Bayer, A. & Gautun, O. R. (2001). Acta Cryst. E57, o1109– 01110.
- Iulek, J. & Zukerman-Schpector, J. (1997). Quim. Nova, 20, 433–434.
- Kresze, G. & Wucherpfennig, W. (1967). Angew. Chem. Int. Ed. 6, 149-167.
- McArdle, P. (1993). J. Appl. Cryst. 26, 752.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- McArdle, P. & Higgins, T. (1995). XCAD4. National University of Ireland, Galway, Ireland.
- McArdle, P. & Daly, P. (1999). *ABSCALC*. PC version. National University of Ireland, Galway, Ireland.
- Mock, W. L. & Nugent, R. M. (1975). J. Am. Chem. Soc. 97, 6521-6526.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Taylor, R. & Kennard, O. (1982). J. Am. Chem. Soc. 104, 5063-5070.